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The idea of investigating the relation of option and stock prices based just on the no-arbitrage assumption, but without assuming any
model for the underlying price dynamics, has a long history in the financial economics literature. We introduce convex and, in particular
semidefinite optimization methods, duality, and complexity theory to shed new light on this relation. For the single stock problem, given
moments of the prices of the underlying assets, we show that we can find best-possible bounds on option prices with general payoff
functions efficiently, either algorithmically (solving a semidefinite optimization problem) or in closed form. Conversely, given observable
option prices, we provide best-possible bounds on moments of the prices of the underlying assets, as well as on the prices of other options
on the same asset by solving linear optimization problems. For options that are affected by multiple stocks either directly (the payoff of the
option depends on multiple stocks) or indirectly (we have information on correlations between stock prices), we find nonoptimal bounds
using convex optimization methods. However, we show that it is NP-hard to find best possible bounds in multiple dimensions. We extend
our results to incorporate transactions costs.

1. INTRODUCTION

A central question in financial economics is to find the price
of a derivative security, given information on the underlying
asset. Under the assumption that the price of the underlying
asset follows a geometric Brownian motion, and using the
no-arbitrage assumption, the Black-Scholes formula pro-
vides an explicit and insightful answer to this question.
Natural questions arise, however, when making no assump-
tions on the underlying price dynamics, but using only the
no-arbitrage assumption:
(1) What are the best possible bounds for the price of a

derivative security with a general payoff function based on
the k moments of the price of the underlying asset?
(2) Conversely, given observable option prices, what are

the best-possible bounds that we can derive on the moments
of the underlying asset?
(3) Given observable option prices, what are the best-

possible bounds that we can derive on prices of other
derivatives on the same asset?
(4) How can we derive best-possible bounds on deriva-

tive securities that are based on multiple underlying assets,
either directly (the payoff of the option depends on mul-
tiple stocks) or indirectly (we have information on corre-
lations between stock prices), when partial information on
the asset prices and their correlations is given?
(5) What is the effect of transaction costs in the above

instances?
The idea of investigating the relation of option and stock

prices based only on the no-arbitrage assumption, without

assuming any model for the underlying price dynamics, has
a long history in the financial economics literature. Cox
and Ross (1976) and Harrison and Kreps (1979) show that
the no-arbitrage assumption is equivalent to the existence
of a probability distribution � (the so-called Martingale
measure) such that option prices become Martingales under
�. The idea that it is possible in principle to infer the
Martingale measure from option prices has been introduced
by Ross (1976). The idea of using optimization to infer the
Martingale measure based on option prices is present in
the work of Rubinstein (1994), who, extending earlier work
of Longstaff (1990), introduces the idea of deducing the
Martingale measure from observed European call prices by
solving a quadratic optimization problem that measures the
closeness of the Martingale measure to the lognormal dis-
tribution. For related work, see Dupire (1994) and Derman
and Kani (1994). Closer to the theme of this paper are
the papers by Lo (1987), who derives best-possible closed-
form bounds on the price of a European call option, given
the mean and variance of the underlying stock price; by
Grundy (1991), who extended Lo’s work for the case when
the first and the kth moments of the stock price are known;
and by Boyle and Lin (1997), who use semidefinite opti-
mization to find an upper bound on the price of a European
call option on the maximum of a number of assets, given
the means, variances, and covariances of these assets.
Our overall objective in this paper is to shed new light

on the relation of option and stock prices, and to demon-
strate that the natural way to address this relation, without
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making distributional assumptions for the underlying price
dynamics, but using only the no-arbitrage assumption, is
the use of convex optimization methods. In particular, we
give concrete answers to the previous questions (1)–(5)
using convex, and in particular semidefinite, optimization
techniques, duality, and complexity theory.
To motivate our overall approach we formulate the

problem of deriving optimal bounds on the price of a
European call option, given the mean and variance of the
underlying stock price. Following Cox and Ross (1976) and
Harrison and Kreps (1979), the no-arbitrage assumption is
equivalent to the existence of a probability distribution �
(the so-called Martingale measure) of the asset price X,
such that the price of any European call option with strike
price k is given by

q�k�= E��max�0	X−k�
	

where the expectation is taken over the unknown distribu-
tion �. Note that we have assumed, without loss of gen-
erality, that the risk-free interest rate is zero. Moreover,
given that the mean and variance of the underlying asset
are observable,

E��X
= �	 and Var��X
= �2	

the problem of finding the best-possible upper bound on
the call price, written as

max
X∼��	�2�+

E��max�0	X−k�
	

(where the + operation means that X is defined on �0	��)
can be formulated as follows:

maximize E��max�0	X−k�
	

subject to E��X
= �

Var��X
= �2∫ �

0
��x�dx = 1

��x�� 0

The closed-form solution for this optimization problem
is due to Scarf (1958), in the context of an inventory-
control problem. Lo (1987) observed the direct application
of Scarf’s result to option pricing. Grundy (1991) intro-
duced as open problems several of the problems that we
solve here: using known option prices, find sharp upper and
lower bounds on the moments of the stock price, and on
the price of an option with a different strike price. These
problems can be formulated as follows:

max /min E��X
	 or E��X
2
	 or E��max�0	X−k�
	

subject to E��max�0	X−ki�
= qi	 i = 1	    	 n∫ �

0
��x�dx = 1

��x�� 0

For a multidimensional example, suppose we have
observed the price q1 of a European call option with strike
k1 for Stock 1, and the price q2 of a European call option
with strike k2 for Stock 2. In addition, we have estimated
the means �1, �2, the variances �

2
1 , �

2
2 , and the covariance

�12 of the prices of the two underlying stocks. Suppose,
in addition, that we are interested in obtaining an upper
bound on the price of a European call option with strike
k for Stock 1. Intuition suggests that because the prices of
the two stocks are correlated, the price of a call option on
Stock 1 with strike k might be affected by the available
information regarding Stock 2. We can find an upper bound
on the price of a call option on Stock 1 with strike k by
solving the following problem:

maximize E��max�0	X1−k�
	

subject to E��max�0	X1−k1�
= q1	

E��max�0	X2−k2�
= q2	

E��X1
= �1	

E��X2
= �2	

E��X
2
1 
= �2

1 +�2
1	

E��X
2
2 
= �2

2 +�2
2	

E��X1X2
= �12+�1�2	∫ �

0

∫ �

0
��x1	 x2�dx1 dx2 = 1	

��x1	 x2�� 0

(1)

More generally, Questions (1)–(4) above are special
cases of the following general optimization problem:

max /min E����X�
	

subject to E��fi�X�
= qi	 i = 0	1	    	 n

��x�� 0	 x ∈ Rm
+	

(2)

where X = �X1	    	Xm� is a multivariate random vari-
able, and � � Rm

+ → R is a real-valued objective function,
fi � R

m
+ → R, i = 1	    	 n are also real-valued, so-called

moment functions whose expectations qi ∈ R, referred to as
moments, are known and finite. We assume that f0�x�= 1
and q0 = E��f0�X�
 = 1, corresponding to the implied
probability-mass constraint. Questions (1)–(4) introduced
earlier can be formulated as follows:
(1) Question (1) for European call options can be formu-

lated as Problem (2) with

��x�=max�0	 x−k�	 fi�x�= xi	 i = 1	    	 k	

where qi is the ith moment of the price of the underlying
asset.
(2) Question (2) for European call options can be for-

mulated as Problem (2) with

��x�= x	 or ��x�= x2	
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and

fi�x�=max�0	 x−ki�	 i = 1	    	 n

(3) Question (3) for European call options can be for-
mulated as Problem (2) with

��x�=max�0	 x−k�	

and

fi�x�=max�0	 x−ki�	 i = 1	    	 n

(4) Question (4) for a general option with payoff
��x1	    	 xm� that is based on m underlying assets can be
formulated as Problem (2) with

fi�x�=xi	 i=1	 	m	 fij�x�=xixj	 i	j=1	m	

qi=�i	 qij=�2
ij+�i�j

When ��x� = �S in Problem (2) is the indicator func-
tion of a convex set S, and fi are power functions,
then Problem (2) models the problem of finding the best-
possible bounds on the probability that a multidimensional
random variable X belongs in the convex set S, given
some joint moments on X. In this context, Problem (2)
received a lot of attention in the 1950s and 1960s. The
major duality results from this period are due to Isii (1960)
and Karlin (see Karlin and Studden 1966, p. 472) for the
univariate case, and by Isii (1963) for the multivariate case.
The interested reader is referred to the book of Karlin and
Studden (1966) for a comprehensive coverage, to Bertsimas
and Popescu (1999) for a modern treatment, and to Smith
(1995) for applications in decision analysis.
The contributions and structure of this paper are as fol-

lows:
1. We provide in §2 an efficient (polynomial time) algo-

rithm for Question (1) for a general payoff function ��x�

by solving a single semidefinite optimization problem, thus
generalizing earlier work of Lo (1987), Grundy (1991), and
Boyle and Lin (1997). This result leads to an unexpected
connection between finance and semidefinite optimization.
2. We derive in §3 closed-form optimal bounds on call

and put prices, given prices of other calls and puts on the
same stock, thus answering Question (2).
3. We derive in §4 best-possible bounds on the mean

and variance of the underlying stock price when prices of
options on this stock are given, thus answering Question (3).
4. In §5 we extend the previous results by taking into

account transaction costs, thus answering Question (3).
5. We present in §6 an efficient (polynomial time)

algorithm to provide bounds (although not best-possible
ones) for options that are affected by multiple stocks,
using convex, and in particular semidefinite, optimization
methods, thus answering Question (4). We also show that it
is NP-hard to find optimal bounds in multiple dimensions.

2. BOUNDS ON OPTION PRICES GIVEN
MOMENT INFORMATION

We are given the n first moments �q1	 q2	    	 qn�, (we let
q0 = 1) of the price of an asset, and we are interested in
finding the best-possible bounds on the price of an option
with payoff ��x�. An example is a European call option
with payoff ��x� = max�0	 x−k�. In §2.1 we propose an
efficient algorithmic solution for general payoff functions,
while in §2.2 we provide a new proof based on duality of
the closed-form upper bound of the price of a European
call option derived by Lo (1987).

2.1. Bounds Based on Semidefinite Optimization

As we discussed in the previous section, the problem of
finding the best upper bound on the price of a Euro-
pean call option with strike k can be formulated as
follows:

maximize E��max�0	X−k�


=
∫ �

0
max�0	 x−k���x�dx	

subject to E��X
i
=
∫ �

0
xi��x�dx = qi

i = 0	1	    	 n	

��x�� 0

(3)

In the spirit of linear programming theory (see
Smith 1995 and Bertsimas and Popescu 1999), we write
the dual of Problem (3) by associating a vector of dual
variables y = �y0	 y1	    	 yn� to each of the constraints in
Problem (3). We obtain the following problem:

minimize
n∑

r=0

yiqi	

subject to
n∑

r=0

yrx
r
�max�0	 x−k�	 ∀x ∈ R+

(4)

Isii (1960) shows that strong duality holds, i.e., the
optimal solution values of Problems (3) and (4) are equal.
Thus, by solving Problem (4) we obtain the desired sharp
bound. In this section, we show that the general problem (3)
can be reformulated as a semidefinite optimization problem
for which very efficient algorithmic solutions are known,
both from a theoretical (see Nesterov and Nemirovski 1994
and Vandenberghe and Boyd 1996) and practical standpoint
(see Fujisawa et al. 1998). The results in the following
proposition are inspired by Ben-Tal and Nemirovski (1998,
p. 140–142). The proofs are in the Appendix.

Proposition 1. (a) The polynomial g�x�=∑2k
r=0 yrx

r sat-
isfies g�x�� 0 if and only if there exists a positive semidef-
inite matrix X = �xij 
i	 j=0	  	 k, such that

yr =
∑

i	 j� i+j=r

xij	 r = 0	    	2k	 X 	 0 (5)

(b) The polynomial g�x� = ∑n
r=0 yrx

r satisfies g�x� �
0 for all x ∈ �0	 a
 if and only if there exists a positive



Bertsimas and Popescu / 361

semidefinite matrix X = �xij 
i	 j=0	  	 n, such that

0= ∑
i	 j� i+j=2l−1

xij	 l = 1	    	 n	

l∑
r=0

yr

(
k− r

l− r

)
ar = ∑

i	 j� i+j=2l

xij 	 l = 0	    	 n	 (6)

X 	 0

(c) The polynomial g�x� = ∑n
r=0 yrx

r satisfies g�x� �
0 for all x ∈ �a	�� if and only if there exists a positive
semidefinite matrix X = �xij 
i	 j=0	 	n, such that

0= ∑
i	 j� i+j=2l−1

xij	 l = 1	    	 n	

k∑
r=l

yr

(
r

l

)
ar = ∑

i	 j� i+j=2l

xij 	 l = 0	    	 n	 (7)

X 	 0

(d) The polynomial g�x�=∑k
r=0 yrx

r satisfies g�x�� 0
for all x ∈ �a	 b
 if and only if there exists a positive
semidefinite matrix X = �xij 
i	 j=0	  	 n, such that

0= ∑
i	 j� i+j=2l−1

xij	 l = 1	    	 n	

l∑
m=0

k+m−l∑
r=m

yr

(
r

m

)(
k− r

l−m

)
ar−mbm

= ∑
i	 j� i+j=2l

xij 	 l = 0	    	 n	 (8)

X 	 0

Theorem 1 shows that Problem (3) can be solved as a
semidefinite optimization problem.

Theorem 1. The best upper bound on the price of a Euro-
pean call option with strike k, given the n first moments
�q1	    	 qn��q0 = 1� of the underlying stock, is given by the
solution of the following semidefinite optimization problem:

minimize
n∑

r=0

yiqi

subject to 0= ∑
i	j� i+j=2l−1

xij	 l=1	 	n	

l∑
r=0

yr

(
k−r

l−r

)
kr = ∑

i	j� i+j=2l

xij 	 l=0	 	n	

0= ∑
i	j� i+j=2l−1

zij	 l=1	 	n	

�y0+k�+�y1−1�k+
k∑

r=2

yrk
r =z00	

�y1−1�k+
k∑

r=2

yrrk
r = ∑

i	j� i+j=2

zij	

k∑
r=l

yr

(
r

l

)
kr = ∑

i	j� i+j=2l

zij 	 l=2	 	n	

X	Z	0

(9)

Proof. We note that the feasible region of Problem (4) can
be written as

n∑
r=0

yrx
r
�0 for all x ∈ �0	 k
	

�y0+k�+ �y1−1�x+
n∑

r=2

yrx
r
�0 for all x ∈ �k	��

By applying Proposition 1 (b) and (c) we refor-
mulate Problem (4) as the semidefinite optimization
Problem (9). �

We next consider an option with payoff function given
as follows:

��x�=



�0�x�	 x ∈ �0	 k1
	

�1�x�	 x ∈ �k1	 k2
	




�d−1�x�	 x ∈ �kd−1	 kd
	

�d�x�	 x ∈ �kd	��	

(10)

where the functions �r�x�, r = 0	1	    	 d are polynomials.
Given the generality of the payoff function (10), we can
approximate the payoff of any option using the payoff func-
tion (10). In this case the dual problem becomes:

minimize
n∑

r=0

yiqi

subject to
n∑

r=0

yrx
r
�



�0�x�	 x ∈ �0	 k1
	

�1�x�	 x ∈ �k1	 k2
	




�d−1�x�	 x ∈ �kd−1	 kd
	

�d�x�	 x ∈ �kd	��	

(11)

The next theorem shows that the problem of finding
best-possible bounds on an option with a general piece-
wise polynomial payoff function is efficiently solvable both
practically and theoretically as a semidefinite optimization
problem.

Theorem 2. The best-possible bounds for the price of an
option with a piecewise polynomial payoff function ��x�
shown in (10), given moments of the underlying asset, can
be solved efficiently as a semidefinite optimization problem.

Proof. The constraint set for Problem (11) can be written
as follows:

n∑
r=0

yrx
r
� �i�x�	 x ∈ �ki−1	 ki
	 i = 1	    	 d+1	

with k0 = 0, kd+1 = �. Let �i�x� =
∑

r=0	  	mi
airx

r , and
assume without loss of generality that mi � n. Then, the
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constraint set for Problem (11) can be equivalently written
as

mi∑
r=0

�yr −air �x
r +

n∑
r=mi+1

yrx
r
� 0	 x ∈ �ki−1	 ki
	

i = 1	    	 d+1

For the interval �k0	 k1
 we apply Proposition 1(b); for the
intervals �ki−1	 ki
, i= 2	    	 d, we apply Proposition 1(d);
and for the interval �kd	��, we apply Proposition 1(c),
to express Problem (11) as a semidefinite optimization
problem. �

2.2. Closed-Form Bounds

In this section, we provide a new proof from first principles
of a closed-form optimal bound of the price of a European
call option with strike k.

Theorem 3 (Optimal Upper Bound on Option Prices,
Lo 1987). The optimal upper bound on the price of an
option with strike k, on a stock whose price at maturity
has a known mean � and variance �2, is computed by

max
X∼��	�2�+

E�max�0	X−k�


=


1
2

[
��−k�+√�2+ ��−k�2

]
	 if k �

�2+�2

2�
	

�−k+k
�2

�2+�2
	 if k <

�2+�2

2�


Proof. The optimal upper bound on the price of a Euro-
pean call option with strike k is given as the solution of
Problem (4), which in this case is formulated by associ-
ating dual variables y0, y1, and y2 with the probability-mass,
mean, and variance constraints, respectively. We obtain the
following dual formulation:

minimize ��2+�2�y2+�y1+y0	

subject to g�x�=y2x
2+y1x+y0�max�0	x−k�	 ∀x�0

A dual feasible function g�·� is any quadratic function
that, on the positive orthant, is nonnegative and lies above
the line �x− k�. In an optimal solution, such a quadratic
should be tangent to the line �x−k�, so we can write g�x�−
�x− k� = a�x− b�2, for some a � 0. The nonnegativity
constraint on g�·� can be expressed as a�x−b�2+x−k� 0,
∀x � 0. Let x0 = b− 1

2a be the point of minimum of this
quadratic. Depending on whether or not x0 is nonnegative,
either the inequality at x = x0 or at x = 0 is binding in an
optimal solution. We have two cases:
(a) If b � 1

2a , then − 1
4a + b− k = 0 (binding constraint

at x = x0);

Substituting a= 1
4�b−k�

in the objective, we obtain

max
X∼��	�2�+

E�max�0	X−k�


= min
b

���−k�+ �b−k��2+�2

4�b−k�

= 1
2

[
��−k�+√�2+ ��−k�2

]
	

achieved at b0 = �2+�2

�
. Let a0 = 1

4�b0−k�
.

This bound is valid whenever b0 �
1

2a0
= 2�b0−k�, that

is, �2+�2

2� � k.
(b) If b < 1

2a , then ab2 − k = 0 (binding constraint at
x = 0).
Substituting a= k

b2
in the objective, we obtain

max
X∼��	�2�+

E�max�0	X−k�
=min
b

k

b2
��2+�2�−2

k

b
�+�

= �−k
�2

�2+�2


achieved at b0 = �2+�2

�
. Let a0 = k

b20
. This bound is valid

whenever b0 <
1

2a0
= b20

2k , that is,
�2+�2

2� > k. �

3. BOUNDS ON OPTION PRICES GIVEN
OTHER OPTION PRICES

In this section, we derive closed-form optimal upper and
lower bounds on the price of a European call option on a
single stock, when prices of other options with the same
exercise date but different strikes on the same stock are
known. For simplicity and without loss of generality, we
assume that the risk-free interest rate is zero. In this section,
we ignore transaction costs, the effect of which will be
discussed in §5.

3.1. Bounds on Call Prices

Let X be the random variable that represents the price of
the underlying stock. We are given prices q�ki� = qi =
E�max�0	X− ki�
 of call options on the same stock with
strikes 0 � k1 � k2 � · · · � kn and the same exercise date,
and we want to compute optimal upper and lower bounds
on q�k�= E�max�0	X−k�
, for a given strike price k.
For notation purposes we set k0 = 0 and q0 = q�0� =

E�max�0	X− 0�
 = E�X
. In some cases it may also be
useful to assume an upper bound K on the price X of the
stock at the time of maturity of the calls. This informa-
tion can be easily integrated in this framework by defining
kn+1 = K and qn+1 = q�K�= E�max�0	X−K�
= 0. If no
such upper bound is assumed, then we assume kn+1 =�.
We say that a given function q�·� is a valid call-pricing
function if there exists a distribution of the stock price X
such that q�k�= E�max�0	X−k�
, ∀k � 0.
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Thoerem 4 (Optimal Bounds on Call Prices). Given
valid prices qi = q�ki�= E�max�0	X−ki�
 of call options
with strikes 0 � k1 � k2 � · · · � kn, on a stock X, the
range of possible valid prices for a call option with strike
price k, where k ∈ �kj	 kj+1�, for some j = 0	    	 n is
�q−�k�	 q+�k�
, where:

q−�k�=max
(
qj

k−kj−1

kj −kj−1

+qj−1

kj −k

kj −kj−1

	

qj+1

kj+2−k

kj+2−kj+1

+qj+2

k−kj+1

kj+2−kj+1

)
	

q+�k�= qj
kj+1−k

kj+1−kj
+qj+1

k−kj

kj+1−kj
 (12)

To obtain some intuition on the nature of these bounds,
we note that for a given function q�·� to be a valid call-
pricing function, we need the existence of a nonnegative
random variable X such that q�k� = E�max�0	X − k�
,
∀k � 0. Clearly, q�·� is decreasing and convex. What
Theorem 4 proves is that the necessary and sufficient con-
ditions for q�·� to define a valid call-pricing function is for
it to be decreasing and convex. In particular, the values of
q−�k� and q+�k� given above are precisely determined by
the monotonicity and convexity of the call-pricing function
q�·�. Figure 1 depicts the construction of the bounds q−�k�
and q+�k� geometrically in a concrete example. More-
over, the range of prices of a call option with strike price
k ∈ �kj	 kj+1� is constrained only by the prices qj−1, qj of
the two options with the closest strikes to the left of k and
to the right of k, qj+1 and qj+2.
The bounds (12) are relevant only when the given options

are correctly priced. Interestingly, this is not always the
case, as one can see in the actual examples given in
Figure 2, where some of the call-pricing functions are

Figure 1. The optimal upper and lower bounds on the
price of a call option, given prices of calls on
the same stock, with different strikes and the
same maturity date.

Notes. (Actual data quoted from The Wall Street Journal, July 7, 1998:
Microsoft July ’98 call options with: ki = �95	100	110	115	120
	 qi =
�12 7

8
	8 3

8
	1 7

8
	 5

8
	 1

4

& k= 105	 q�k�= 4 1

2
). Note that the bounds are derived

by the convexity and monotonicity of the the price function q�·�.

clearly nonconvex, so the upper bounds computed by
Theorem 4 may turn out smaller than the respective lower
bounds (see the explanation in the notes of Figure 2).

Proof of Theorem 4: The Lower Bound Problem. We
first consider the lower bound problem and formulate it as
a continuous optimization problem over all feasible stock
price densities ��x�, as follows:

q−�k�=minimize
∫ �

k
�x−k���x�dx	

subject to
∫ �

ki

�x−ki���x�dx = qi	

i = 1	    	 n	∫ �

0
��x�dx = 1	

��x�� 0	 ∀x ∈ R+

(13)

If we restrict our horizon to stock price distributions px =
P�X = x� over a discrete range of values S ⊆ R+ that
include the strike prices ki ∈ S, i = 1	    	 n, we can for-
mulate the restricted problem as

q−
R �k�=minimize

∑
x�k

�x−k�px	

subject to
∑
x�ki

�x−ki�px=qi	 i=1	 	n	

∑
x�0

px=1	

px�0	 ∀x∈S

(14)

Clearly, q−
R �k� � q−�k�, because the minimization in

Problem (14) is over a restricted set of distributions. We
will show that q−

R �k� = q−�k�. We construct the corre-
sponding dual problems by associating a dual variable ui,
i= 1	    	 n with each of the first n constraints, and a dual
variable v for the probability mass constraint. The dual of
Problem (13) is

q−
D�k�=maximize v+

n∑
i=1

qiui

subject to g�x�= v+ ∑
i �ki�x

�x−ki�ui

�


0	 0� x < k	

x−k	 x � k

(15)

The dual problem of the restricted Problem (14) is the
same as (15), except the constraints need hold only on
the discrete set of points x ∈ S, where X ranges. We
denote its optimal solution values as q−

RD�k�. Notice that
for both problems, the dual feasible function g�x� is piece-
wise linear, in which the slope changes at the points ki,
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Figure 2. The optimal upper and lower bounds for each call price, determined by the prices of the neighboring calls.

Notes. Clockwise: S&P100 July ’98, S&P500 Sep ’98, Yahoo Aug ’98, Amazon July ’98. Call prices from The Wall Street Journal, July 7, 1998. This
apparent mispricing can be explained by noting that these are closing prices, so these prices might not all be present simultaneously. Moreover, transaction
costs are ignored.

i = 1	    	 n, and therefore it is sufficient to solve each
problem with constraints only at the points ki. Thus, the
two dual problems are equivalent to

q−
RD�k�=maximize v+

n∑
i=1

qiui	

subject to

g�k1�= v �0

g�k2�= v +�k2−k1�u1 � 0






g�kj�= v +�kj−k1�u1 +···+ �kj−kj−1�uj−1 �0

g�k�= v +�k−k1�u1 +···+ �k−kj�uj �0

g�kj+1�= v +�kj+1−k1�u1 +···+ �kj+1−kj�uj �kj+1−k







g�kn�= v +�kn−k1�u1 +···+ �kn−kn−1�un−1 �kn−k

u1 +u2 +···+ un �1	

(16)

where the last constraint is meant to capture the limiting
situation as x → �. We have q−

D�k� = q−
RD�k�, and weak

duality holds for both primal-dual pairs, which means:
q−
R �k�� q−�k�� q−

D�k�. Moreover, strong duality holds for
the discretized version (14), because these are linear opti-

mization problems, and therefore, q−
R �k�= q−

RD�k�= q−
D�k�.

This shows that

q−�k�= q−
R �k�= q−

D�k� (17)

Moreover, there exists a discrete stock-price distribution
that achieves the bound q−�k�.
We next proceed to solve Problem (16). This is a linear

optimization problem with n+2 constraints and n+1 vari-
ables whose optimum, if it exists, is achieved at a basic fea-
sible solution. In an optimal basic feasible solution, n+ 1
of the constraints must be binding, including the one at k,
that is, the constraint g�k�� 0. In this case, the constraints
g�kj�� 0 and g�kj+1�� kj+1−k cannot be simultaneously
binding. We have two cases:
Case 1. Constraint g�kj�� 0 is not binding. In this case

we obtain the following optimal solution:

g�x�=


0	 x � kj−1	

kj −k

kj −kj−1

�x−kj−1�	 x ∈ �kj−1	 kj�	

x−k	 x � kj&

that is, the corresponding dual variables are

uj−1 =
kj −k

kj −kj−1
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uj =
k−kj−1

kj −kj−1

	

ui = 0	 ∀ i = j−1	 j	

v = 0

The corresponding dual-optimal objective value in this
case is

q−
1 �k�= qj

k−kj−1

kj −kj−1

+qj−1

kj −k

kj −kj−1



Case 2. Constraint g�kj+1�� kj+1−k is not binding. In
this case we obtain the following optimal solution:

g�x�=


0	 x � kj+1	

kj+2−k

kj+2−kj+1

�x−kj+1�	 x ∈ �kj+1	 kj+2�	

x−k	 x � kj+2

The corresponding dual variables are

uj+1 =
kj+2−k

kj+2−kj+1

	

uj+2 =
k−kj+1

kj+2−kj+1

	

ui = 0	 ∀ i = j+1	 j+2	

v = 0

The corresponding dual-optimal objective value in this
case is

q−
2 �k�= qj+1

kj+2−k

kj+2−kj+1

+qj+2

k−kj+1

kj+2−kj+1



The desired optimal lower bound is given by: q−�k� =
max
(
q−
1 �k�	 q

−
2 �k�
)
, which leads to the lower bound

expression in Equation (12). Note that an extremal distribu-
tion of the stock price X that achieves this bound is given
by the corresponding optimal solution of the discretized
primal problem.

The Upper Bound Problem. Using the same procedure,
we formulate the optimal upper bound problem as a con-
tinuous optimization problem over all feasible stock price
densities ��x�:

q+�k�=maximize
∫ �

k
�x−k���x�dx	

subject to
∫ �

ki

�x−ki���x�dx = qi	

i = 1	    	 n	∫ �

0
��x�dx = 1	

��x�� 0	 ∀x ∈ R+	

(18)

and solve the corresponding dual problem:

q+
D�k�=minimize v+

n∑
i=1

qiui

subject to g�x�= v+ ∑
i �ki�x

�x−ki�ui

�

{
0	 0� x < k	

x−k	 x � k

(19)

Similar to the lower bound problem, we prove that strong
duality holds, the primal is equivalent to its discretized ver-
sion, and it is sufficient to solve the dual problem with con-
straints only at the points ki, i = 1	    	 n. We obtain that

g�x�=



0	 x � kj	

kj+1−k

kj+1−kj
�x−kj�	 x ∈ �kj	 kj+1�	

x−k	 x � kj+1	

and the corresponding dual variables are

uj =
kj+1−k

kj+1−kj
	

uj+1 =
k−kj

kj+1−kj
	

ui = 0	 ∀ i = j	 j+1	

v = 0

The corresponding dual optimal objective value in this
case is

q+�k�= qj
kj+1−k

kj+1−kj
+qj+1

k−kj

kj+1−kj
 �

3.2. Bounds on Prices of Mixed Options

We now extend the results of the previous section to put
options and combinations of calls and puts. Let p�k� be the
price of a put option with strike k and the same exercise
date. Then p�k�=E�max�0	 k−X�
. Because the price of a
call with the same strike satisfies q�k�=E�max�0	X−k�
,
then

p�k�−q�k�= k−E�X


Clearly, the function p�·� is increasing and concave. Similar
to the case of calls, these conditions are in fact necessary
and sufficient for put-pricing functions to be valid. In other
words, if the prices pi of only puts are known with strikes
ki, then the best-possible bounds for the price of a put with
strike k ∈ �kj	 kj+1� are p−�k� < p�k� < p+�k� with

p−�k�= pj

kj+1−k

kj+1−kj
+pj+1

k−kj

kj+1−kj
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p+�k�=min
(
pj

k−kj−1

kj −kj−1

+pj−1

kj −k

kj −kj−1

	 (20)

pj+1

kj+2−k

kj+2−kj+1

+pj+2

k−kj+1

kj+2−kj+1

)


Suppose we are given prices of call and put options with
various strikes ki, and we want to find optimal bounds on
prices of a call or put option with strike k. Notice that if
we know the prices of both a call and of a put option with
a certain strike ki, then we can derive the expected stock
price from the put-call parity formula E�X
= qi −pi +ki.
Now, if we know the expected price of the stock E�X
, the
problem can be directly reduced to the one we solved in
§3.1 by simply writing all option prices in terms of call
prices, using the put-call parity result.
Finally, suppose we are given prices qi of calls with

strikes ki, i= 1	    	 n and prices pi of puts with strikes ci,
i= 1	    	m, such that ci = kj for all i	 j. We are interested
in finding the best-possible bounds for a call with strike k.
In this case we cannot determine E�X
 uniquely from the
put-call parity. By the put-call parity we can transform the
given put prices to corresponding call prices q′

i given by

q′
i = pi+E�X
− ci

We sort the strikes ki and ci. We want the call prices q′
i to

be consistent. We apply Theorem 4 for the calls with strikes
ci as well as the call with strike k. This leads to linear
inequalities involving the two unknowns q�k� and E�X
.
Solving the resulting linear optimization problem with the
objective of maximizing or minimizing q�k� gives optimal
upper and lower bounds on q�k�.

4. BOUNDS ON THE VARIANCE OF THE STOCK
PRICE, GIVEN OPTION PRICES

In this section, we determine optimal bounds on the vari-
ance of a stock price X, when prices of options with dif-
ferent strikes and same exercise date T on that stock are
known.

4.1. Bounds on the Mean

Typically, the risk-neutral mean of the price of a stock is
known (it is the present price). For completeness, how-
ever, we derive bounds in case the present price is not
observable.

Call Options. The bounds on the expected stock price
given call prices information are easy to derive, because we
can interpret E�X
= E�max�0	X−0�
= q�0� as the price
of a call option with zero strike. The result of Theorem 4
can be applied in this case to find the following optimal
bounds on E�X
= q�0� ∈ �q−�0�	 q+�0�
 :

q−�0� = q1k2−q2k1
k2−k1

= M−	

q+�0� = q1+k1 = M+
(21)

Notice that these bounds depend only on the prices of
the two calls with smallest strikes.

Mixed Put and Call Options. Now suppose we are
given miscellaneous prices of either calls or puts with dif-
ferent strikes. The optimal bounds M− and M+ on the
expected stock price E�X
 can be determined by con-
verting the put prices into call prices by the put-call
parity result, and then constraining the call-pricing func-
tion to be decreasing and convex, using the bounds from
Theorem 4.

4.2. Upper Bounds on the Variance

To compute bounds on the variance we need to assume a
finite upper bound K on the stock price X at time T . We
incorporate this information by introducing a call option
with strike K with price equal to zero, i.e., kn+1 = K and
qn+1 = q�kn+1�= 0.

Call Options. Suppose first that our information consists
of call prices only. We want to determine optimal upper
bounds on the variance Var�X
=E�X2
−E�X
2 of a stock
price X, when prices qi of call options with strikes ki, i =
1	    	 n on that stock are known.
We can formulate this as an optimization problem as

follows:

V+=maximize
∫ K

0
x2��x�dx−

(∫ K

0
x��x�dx

)2

	

subject to
∫ K

ki

�x−ki���x�dx=qi	

i=1	 	n	∫ K

0
��x�dx=1

��x��0	 x∈ �0	K


(22)

Theorem 5 (Optimal Upper Bound on the Variance
of the Stock Price). (a) Given prices qi of European
calls with strikes ki, and assuming that the mean M of
the stock price is known, the optimal upper bound on the
variance of the stock price is given by

V+�M�=
n∑

i=1

�ki+1−ki−1�qi+k1M −M2 (23)

(b) If the mean price is not known, then the optimal
upper bound is given by

V+ =



n∑
i=1

�ki+1−ki−1�qi if
q1k2−q2k1
k2−k1

<
k1
2
	

+k21
4
	

n∑
i=1

�ki+1−ki−1�qi if
q1k2−q2k1
k2−k1

�
k1
2


+k1
q1k2−q2k1
k2−k1

−
(q1k2−q2k1

k2−k1

)2
	

(24)
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Proof. (a) We first solve Problem (22) for a fixed value
M = E�X
, obtaining an optimal value V+�M�, which we
then optimize over all feasible values of M ∈ �M−	M+
.
We solve the following auxiliary problem with arbitrary
fixed expected stock price E�X
=M .

Z+�M� = V+�M�+M2

= maximize
∫ K

0
x2��x�dx	

subject to
∫ K

0
x��x�dx =M = q0	∫ K

ki

�x−ki���x�dx = qi	

i = 1	    	 n	∫ K

0
��x�dx = 1	

��x�� 0	 x ∈ �0	K


We consider the corresponding dual problem:

Z+
D�M�=minimize v+u0M +

n∑
i=1

uiqi	

subject to g�x�= v+u0x

+ ∑
i �ki�x

�x−ki�ui � x2	

0� x � K

Again, the optimum is obtained by forcing the constraints
to be binding at the points ki: g�ki�= k2i 	 i = 0	    	 n+1.
The corresponding dual solution is v= k0 = 0, u0 = k1, ui =
ki+1−ki−1	 i = 1	    	 n, and the optimal objective value is
Z+�M�=Z+

D�M�= k1M+∑n
i=1�ki+1−ki−1�qi. Thus, given

the mean price M , the optimal upper bound on the variance
of X is given by Equation (23).
(b) We next optimize over all feasible values of M ∈

�M−	M+
 to determine the upper bound on the variance

V+ =maximize
n∑

i=1

�ki+1−ki−1�qi+k1M −M2	

subject to M− = q1k2−q2k1
k2−k1

�M �M+ = q1+k1

This is a concave quadratic-optimization problem that
can be solved in closed-form, leading to the closed-form
bound (24). �

Mixed Put and Call Options. Suppose now that we are
given either call or put prices for various strikes qi = q�ki�
for all i ∈ Q, and pi = p�ki� for all i ∈ P, where P and Q
are two sets of indices so that P ∪Q = 11	    	 n+12 and
n+1∈Q, because we assumed qn+1 = q�kn+1�= q�K�= 0.
We transform the puts to corresponding calls with prices:

q′
i = pi−ki+M	 i ∈ P

We sort the strikes in P ∪Q, and apply the bound (23) for
the sequence of calls with prices qi	 i ∈ Q and q′

i 	 i ∈ P.
Note that if P and Q are not disjoint, then we can determine
the value of M = E�X
 from the put-call parity result for
a pair �pj	 qj� with j ∈ P ∩Q. When the sets P and Q are
disjoint, we can obtain an interval �M−	M+
 in which M
lies, using the technique of §4.1. Applying the bound (23),
we will find that an optimal upper bound for the variance of
the price given M is a concave quadratic function V+�M�
of M . Then, the optimal upper bound on the variance given
M is given by

V+ = max
M∈�M−	M+


V+�M�

4.3. Lower Bounds on the Variance

Call Options. Suppose for now that the available infor-
mation consists of call prices only. We denote q0 =M and
k0 = 0. We prove the following result.

Theorem 6 (Optimal Lower Bound on the Variance
of the stock price). (a) Given prices qi of European
calls with strikes ki, and assuming the mean M = q0 of
the stock price is known, the optimal lower bound on the
variance of the price is given by

V−�M�=
n+1∑
i=0

tik
2
i −Z�M�−M2	 (25)

where Z�M� is the objective value of the following
quadratic network flow problem:

Z�M�= minimize
n+1∑
i=0

tid
2
i 	

subject to di+di−1 � ci	 i = 1	    	 n+1	

di � 0	 i = 0	    	 n+1	

(26)

with ti = Ti−1−Ti � 0, Ti =− qi+1−qi
ki+1−ki

	 i= 0	    	 n	 �T−1 = 1,
Tn+1 = 0�, and ci = ki−ki−1 � 0.

(b) If the mean price is not known, then the optimal
lower bound is given by

V− = min
M∈�M−	M+


V−�M�	 (27)

with M− = q1k2−q2k1
k2−k1

and M+ = q1+k1.

Proof. (a) Formulating a minimization optimization
problem analogous to the maximization problem (22), and
taking the dual, we obtain that given M = q0, the lower
bound is given by

V−�M�+M2

=maximize v+
n∑

i=0

qiui	

subject to g�x�= v+ ∑
i �ki�x

�x−ki�ui � x2	

0� x � K



368 / Bertsimas and Popescu

For the upper bound problem, we only needed the con-
straints at the points ki to be binding, namely: g�ki� =
k2i 	 i = 0	    	 n+ 1. This is not sufficient for the lower
bound. To ensure feasibility, we also need to make sure that
the line segment �g�ki�	 g�ki+1�� lies below the quadratic
x2 on each interval x ∈ �ki	 ki+1
. This can be interpreted
geometrically as follows. Consider the line tangent from the
point �ki	 g�ki�� to the quadratic x

2. The constraint says that
if the tangency point occurs within the interval �ki	 ki+1�,
then the line segment connecting g�ki� and g�ki+1� has to
lie below the tangent.
To express this algebraically, notice that the constraints

at the points ki � g�ki�� k2i , can be formulated by denoting
d2
i = k2i −g�ki�� 0	 i = 0	    	 n+1, with di � 0. Then

the x-coordinate of the tangency point equals ki+di, hence
the slope of the tangent is 2�ki+di�. The constraint for the
interval �ki	 ki+1� can be expressed as follows:

If ki+di � ki+1	 then

k2i+1−d2
i+1 � k2i −d2

i +2�ki+di��ki+1−ki�

The last inequality can be written as d2
i+1 � �di − �ki+1 −

ki��
2. By definition di � 0	 i = 0	    	 n + 1, so the

constraints can be restated as di+1 � max�0	 ki+1 − ki −
di�	 ∀ i = 0	    	 n.
In terms of dis, we can write:

ui =
�k2i+1−d2

i+1�− �k2i −d2
i �

ki+1−ki
+ �k2i −d2

i �− �k2i−1−d2
i−1�

ki−ki−1

for all i = 1	    	 n	

u0 =
�k21 −d2

1�− �k20 −d2
0�

k1−k0

and

v = k20 −d2
0 =−d2

0 

By regrouping the terms in the objective, we can write the
dual problem in terms of the dis as follows:

V−�M�+M2 =maximize
n+1∑
i=0

�k2i −d2
i ��Ti−1−Ti�	

subject to di �max�0	 ki−ki−1−di−1�	

i = 1	    	 n+1	

where Ti = − qi+1−qi
ki+1−ki

	 i = 0	    	 n	T−1 = 1, and Tn+1 = 0.
The optimal bound V−�M� can thus be rewritten as

V−�M�=
n+1∑
i=0

tik
2
i −Z�M�−M2	

where Z�M� is the objective value of the following
quadratic network-flow problem:

Z�M�=minimize
n+1∑
i=0

tid
2
i 	

subject to di+di−1 � ci	 i = 1	    	 n+1	

di � 0	 i = 0	    	 n+1	

where we denoted ti = Ti−1−Ti � 0	 ci = ki−ki−1 � 0.
(b) To compute the overall optimal lower bound on the

variance, independent from the mean, it remains to mini-
mize V−�M� over all feasible values M ∈ �M−	M+
, where
M−	M+ are given from the bounds in Equation (21). �

Problem (26) is a separable quadratic optimization
problem with network-flow constraints. Because of its
special structure it can be solved by the following dynamic-
programming algorithm:
Choose d0 and let

di+1 =
{
ki+1−ki−di	 if ki+1 � ki+di	

0	 if ki+1 < ki+di

To obtain the optimal solution, one has to optimize over
all initial choices of d0 � 0. A heuristic solution that per-
forms very well in practice starts with d0 = 0.
Geometrically, this iterative construction can be visual-

ized (see Figure 3) as follows: At each step �i+ 1�, from
the point �ki	 g�ki�� draw the positive slope tangent to the
curve f �x� = x2. The x-coordinate of the tangency point
equals ki +di, and according to whether or not this falls
within the next interval �ki	 ki+1
, we have two cases:
• If ki + di � ki+1, then draw the next segment of

g�x�	 x ∈ �ki	 ki+1
 to be the tangent.
• If ki + di > ki+1, then draw the next segment of

g�x�	 x ∈ �ki	 ki+1
 so that g�ki+1�= k2i+1.

Mixed Put and Call Options. In the case when both call
and put prices are given, we first transform all informa-
tion in terms of calls and find the best possible bounds

Figure 3. The dynamic-programming algorithm.
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M−	M+ on the mean M using Theorem 4. To find an
optimal lower bound on the variance, we again solve the
problem in Theorem 6(b).

4.4. Computational Results

In this section, we discuss the quality of the upper and
lower bounds on the mean and variance of a stock price.
In Table 1, we report results on the January ’99 Microsoft
stock price, computed using information on European call
prices from The Wall Street Journal of July 7, 1998.
The current stock price is S = 10713

16 , and the listed call
options have strikes k = �80	95	100	110	120	140
 and
are sold at closing for q = �31	19	16	10	6	225
. We also
incorporate into our calculations the listed risk-free interest
rate, listed as r = 00557. Call prices are given by

q�k�= e−r�T−t�E�max�0	X−k�
	

where T − t is the time to maturity, measured in years. In
this case T − t = 05.
Using the Black-Scholes option-pricing formula, we esti-

mate from the data an implied volatility of sBS = 03241.
The corresponding estimates for the mean and standard
deviation of the forward stock price, under the risk-neutral
valuation, are MBS = S er�T−t� = 1108573 and �BS =
Ser�T−t�

√
eS2�T−t�−1= 267394.

Table 1. Optimal bounds on the standard deviation for
various values of the mean M given option
prices.

M �− �+

976829 491709 492101
981723 485859 486306
986617 479888 480391
991511 473790 474352
996405 467563 468184

1001299 461199 461882
1006193 454693 455440
1011087 448040 448852
1015981 441232 442111
1020875 434262 435212
1025769 427122 428145
1030663 419804 420903
1035557 412298 413476
1040451 404594 405854
1045345 396679 398027
1050239 388542 389980
1055133 380168 381702
1060027 371540 373175
1064921 362642 364384
1069815 353451 355307
1074709 343946 345924
1079603 334099 336207
1084497 323878 326128
1089391 313248 315651
1094285 302165 304736
1099179 290577 293333
1104073 278422 281384
1108967 265621 268815
1113861 252076 255535
1118755 237660 241427

Using M = 1108573 and assuming an upper bound
K = 160 on the stock price, we apply the upper bound
given in Equation (23) and the lower bound given in Equa-
tion (25) to obtain that the standard deviation of the stock
price � belongs in the interval: � ∈ �266677	 269851�.
If from the standard deviation we were to compute the
implied volatility, as implied by the Black-Scholes formula,
we would obtain s ∈ �03223	 03259�, which indeed is
very close to the direct Black-Scholes forecasts.
If we do not use any information from the Black and

Scholes model, but we apply only the bounds on the mean
given by Equations (21), we obtain that the average stock
price M is in the interval M ∈ �M−	M+
 with M− =
976829, and M+ = 1118755. In Table 1, we vary the
mean M in the interval �976829	 1118755
, and report
the corresponding interval � �−	 �+
 of the standard devia-
tion of the stock price. For a given M , we observe that the
bounds we derive on the standard deviation are extremely
tight. As M varies in the interval �976829	 1118755
, we
obtain that the standard deviation is within 237660� � �

492101.

5. BOUNDS WITH TRANSACTION COSTS

Up until now we have assumed a frictionless economy
and developed our results based on the theory of asset
pricing under the no-arbitrage assumption, ignoring trans-
action costs. In this section, we derive bounds in the pres-
ence of transaction costs, using the no-arbitrage assump-
tion. When transaction costs are taken into account, the
price of an option is within an interval defined by the bid-
ask spread. A call-pricing function is then defined as a pair:

qtc �R+→R2
+	qtc�k�=�qbid�k�=q−�k�	qask�k�=q+�k��

In a frictionless market, the asset-pricing theory of
Harrison and Kreps (1979) ensures the existence of a
risk-neutral Martingale measure that uniquely determines a
valid linear-pricing rule for all assets. Suppose we are given
n call options with strikes ki, and bid-ask prices q−

i 	 q
+
i ,

i = 1	    	 n. In the presence of transaction costs, Jouini
and Kallal (1995) show that there is no arbitrage if and
only if there exists a probability measure � such that

q−
i � E��max�0	X−ki�
� q+

i 	 i = 1	    	 n

By Theorem 4, this is equivalent to the existence of
a convex decreasing function q∗ � R+ → R+, such that
q∗�ki� ∈ �q−

i 	 q
+
i 
, for all i = 1	    	 n. If no convex

decreasing function can be fitted between the bid (q−) and
ask (q+) processes, then the given set of bid-ask spreads
is not valid, and an arbitrage opportunity exists. This pro-
vides an easy test for arbitrage opportunities in a market
with transaction costs.
The next theorem extends the results from the two pre-

vious sections by replacing the equality constraints in each
respective primal problem by

q−
i �

∫ �

ki

�x−ki���x�dx � q+
i 	 i = 1	    	 n
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We thus introduce corresponding dual variables u−
i 	 u

+
i ,

which are nonnegative for upper bound problems and non-
positive for the lower bounds. The corresponding dual func-
tion becomes

g�x�= v+ ∑
i�ki�x

�x−ki�ui	

where ui = u+
i −u−

i . With the notation qi = q+
i −q−

i �� 0�,
we can write (for all problems) the dual objective as

v+
n∑

i=1

�q+
i u

+
i −q−

i u
−
i �= v+

n∑
i=1

q+
i ui+

n∑
i=1

qiu
−
i

= v+
n∑

i=1

q−
i ui+

n∑
i=1

qiu
+
i 

By optimizing the corresponding dual, and using very sim-
ilar techniques to those in Theorems 4, 5, and 6, we prove
the following result.

Theorem 7 (Bounds Under Transaction Costs). Given
bid and ask prices q−

i and q+
i for European calls with

strikes ki, i= 1	    	 n, then: (a) The optimal bounds on a
call with strike k is given by

q−�k�=max
(
q−
j

k−kj−1

kj −kj−1

+q−
j−1

kj −k

kj −kj−1

	

q−
j+1

kj+2−k

kj+2−kj+1

+q−
j+2

k−kj+1

kj+2−kj+1

)
	

q+�k�= q+
j

kj+1−k

kj+1−kj
+q+

j+1

k−kj

kj+1−kj


(b) The optimal bounds on the mean stock price are

M− = q−
1 k2−q−

2 k1
k2−k1

	

M+ = q+
1 +k1

(c) The optimal lower bound on the variance is

V−�M�=
n+1∑
i=0

tik
2
i −Z�M�−M2	

where Z�M� is the objective value of the following
quadratic network flow problem:

Z�M�= minimize
n+1∑
i=0

tid
2
i 	

subject to di+di−1 � ci	 i = 1	    	 n+1	

di � 0	 i = 0	    	 n+1	

with ti = Ti−1−Ti � 0, Ti =− q−i+1−q−i
ki+1−ki

, i= 0	    	 n, �T−1 =
1	 Tn+1 = 0�, and ci = ki−ki−1 � 0.

The optimal upper bound on the variance is

V+�M�=
n∑

i=1

�ki+1−ki−1�q
+
i +k1M −M2

6. BOUNDS IN MULTIPLE DIMENSIONS

In this section, we consider generalizations of the bounds
we considered in earlier sections when we have information
about a set of m different stocks. In particular, we have an
option with payoff function ��x�	� � Rm

+ →R, and a vector
of n moment functions f = �f1	    	 fn� (we let f0�x�= 1),
fi � R

m
+ → R	 i = 0	1	    	 n, and the corresponding vector

of moments q = �q1	    	 qn� (we let q0 = 1). We address
in this section the upper bound problem (2):

maximize E����X�
	

subject to E��fi�X�
= qi	 i = 1	    	 n∫ �

0
��x�dx = 1	

��x�� 0	 x ∈ Rm
+	

(28)

where the expectation is taken over all Martingale measures
defined on Rm

+. We can solve the lower bound problem by
changing the sign of the objective function � in Problem
(28).
In Theorem 9 we show that solving Problem (28) is NP-

hard. For this reason, we find a weaker bound by opti-
mizing over all Martingale measures defined on Rm as
opposed to Rm

+. For this reason we consider the following
problem:

maximize E����X�
	

subject to E��fi�X�
= qi	 i = 1	    	 n∫ �

−�
��x�dx = 1

��x�� 0	 x ∈ Rm	

(29)

and its dual,

minimize y0+
n∑

i=1

yiqi	

subject to y0+
n∑

i=1

yifi�x�� ��x�	 ∀x ∈ Rm

(30)

Isii (1963) (see also Karlin 1966, p. 472 or Smith 1995)
shows that under weak conditions1 on the moment vector
q strong duality holds, i.e., the optimal solution values of
Problems (29) and (30) are equal.
The best-possible upper bound corresponds to the optimal

solution value of Problem (28). Because Problem (29) is
a relaxation of Problem (28), we obtain an upper bound,
although not necessarily the optimal one, by solving
Problem (29), and by strong duality, Problem (30). In
Theorem 8 we identify cases under which we can solve
Problem (30) efficiently.

Theorem 8. An upper bound on Problem (28) can be
solved in polynomial time in the following cases:

(a) If � and fi, i = 1	    	 n are quadratic or linear
functions of the form

��x� = x′Ax+b′x+ c

fi�x� = x′Aix+b′
ix+ ci	 i = 1	    	 n	

(31)
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then Problem (30), and thus Problem (29), can be solved
in polynomial time by solving the following semidefinite
optimization problem:

minimize
n∑

i=1

yiqi	

subject to


n∑

i=1

yici+y0−c

( n∑
i=1

yibi−b

)′/
2

( n∑
i=1

yibi−b

)/
2

n∑
i=1

yiAi−A

	0

(32)

(b) If � and fi, i= 1	    	 n, are quadratic or piecewise
linear functions of the form

��x� = x′Ax+b′
kx+ ck x ∈Dk	 k = 1	    	 d	

fi�x� = x′Aix+b′
ikx+ cik	 x ∈Dk	

i = 1	    	 n	 k = 1	    	 d	

(33)

over the d disjoint polyhedra D1	    	Dd that form a par-
tition of Rm, and d is a polynomial in n	m, then Problem
(30), and thus Problem (29), can be solved in polynomial
time.

Proof. (a) We first consider the case in which all the
functions � and fi are are quadratic or linear as in
Equation (31). In this case, Problem (30) becomes

minimize y0+
n∑

i=1

yiqi

subject to g�x�� 0	 ∀x ∈ Rm	

where

g�x�= y0+
n∑

i=1

yifi�x�−��x�= x′Âx+ b̂′x+ ĉ	

with

Â=
n∑

i=1

yiAi−A	 b̂ =
n∑

i=1

yibi−b	 ĉ =
n∑

i=1

yici+y0− c

Thus, the constraints g�x�� 0 are equivalent to

x′Âx+ b̂′x+ ĉ � 0	 ∀x ∈ Rm	

or equivalently(
1

x

)′ [
ĉ b̂/2

b̂/2 Â

](
1

x

)
� 0	 ∀x ∈ Rm (34)

Equation (34) holds if and only if[
ĉ b̂′/2

b̂/2 Â

]
	 0	

i.e., the matrix
[

ĉ

b̂′/2
b̂/2

Â

]
is positive semidefinite. Thus,

Problem (30) is equivalent to the semidefinite optimization

problem (32), which is solvable in polynomial time (see, for
example, Nesterov and Nemirovski 1994 and Vandenberghe
and Boyd 1996).
(b) If the functions � or fi	 i = 1	    	 n are as in (33),

then Problem (30) can be expressed as

minimize y0+
n∑

i=1

yiqi	

subject to gk�x�= x′Âx+ b̂′
kx+ ĉk � 0	 ∀x ∈Dk	

k = 1	    	 d	

(35)

where

Â=
n∑

i=1

yiAi−A	 b̂k =
n∑

i=1

yibik−bk	

ĉk =
n∑

i=1

yicik+y0− ck

By the equivalence of separation and optimization (see
Grötschel et al. 1981), Problem (35) can be solved in poly-
nomial time if and only if the following separation problem
can be solved in polynomial time.

The Separation Problem. Given an arbitrary y =
�y0	 y1	    	 yn�, check whether gk�x� � 0, for all x ∈ Dk,
k = 1	    	 n and if not, find a violated inequality.
We next show that solving the separation problem

reduces to checking whether the matrix Â is positive
semidefinite, and in this case solving the convex quadratic
problems

min
x∈Dk

gk�x�	 k = 1	    	 d

This can be done in polynomial time using an ellipsoid
algorithm (see Grötschel et al. 1981). The following algo-
rithm solves the separation problem in polynomial time.

Algorithm A
1. If Â is not positive semidefinite, we construct a vector

x0 so that gk�x0� < 0 for some k= 1	    	 n. We decompose
Â = Q′8Q, where 8 = diag�91	    	 9n� is the diagonal
matrix of eigenvalues of Â. Let 9i < 0 be a negative eigen-
value of Â. Let u be a vector with uj = 0, for all j = i,
and ui selected as follows: Let vk be the largest root of
each polynomial if it exists. Let ui =maxk vk+1. If all the
polynomials do not have real roots, then ui can be chosen
arbitrarily. Then,

9iu
2
i + �Qb̂k�iui+ ĉk < 0	 ∀k = 1	    	 d

Let x0 = Q′u. Because the polyhedra Dk form a partition
of Rm, then x0 ∈Dk0

for some k0. Then,

gk0�x0�= x′
0Âx0+ b̂′

k0
x0+ ĉk0

= u′QQ′8QQ′u+ b̂′
k0
Q′u+ ĉk0

= u′8u+ �Qb̂k0�
′u+ ĉk0
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=
n∑

j=1

9ju
2
j +

n∑
j=1

�Qb̂k0�juj + ĉk0

= 9iu
2
i + �Qb̂k0�iui+ ĉk0 < 0

This produces a violated inequality.
2. Otherwise, if Â is positive semidefinite, then we test

if gk�x� � 0	∀x ∈ Dk by solving d convex quadratic opti-
mization problems:

min
x∈Dk

x′Âx+ b̂′
kx+ ĉk	 for k = 1	    	 d (36)

We denote by x∗
k an optimal solution of Problem (36), and

zk = gk�x
∗
k� the optimal value of Problem (36). If zk � 0

for all k = 1	    	 d, then there is no violated inequality.
Otherwise, if zk0 < 0 for some k0, then we find xk

0 such that
g�x∗

k� < 0, which represents a violated inequality.
Thus, Algorithm A solves the separation problem in

polynomial time. It follows that Problem (30), and hence
Problem (29), can be solved in polynomial time. �

6.1. Examples

Suppose we have observed the price q1 of a European call
option with strike k1 for Stock 1 and the price q2 of a
European call option with strike k2 for Stock 2. In addi-
tion, we have estimated the means �1	�2, the variances
�2
1 	�

2
2 , and the covariance �12 of the prices of the two

underlying stocks. Suppose in addition that we are inter-
ested in obtaining an upper bound on the price of a Euro-
pean call option with strike k for Stock 1. Intuition suggests
that because the prices of the two stocks are correlated, the
price of a call option on Stock 1 with strike k might be
affected by the available information regarding Stock 2. We
can find an upper bound on the price of a call option on
Stock 1 with strike k by solving the problem we formulated
in Equation (1), which is a special case of Problem (28),
with m = 2	 n = 7. From Theorem 8(b), Problem (1) can
be solved efficiently. In this case, there are six sets Dk as
follows:

D1 = 1�x1	 x2� � x1 � k	x2 � k22	

D2 = 1�x1	 x2� � x1 � k	x2 � k22	

D3 = 1�x1	 x2� � k1 � x1 � k	x2 � k22	

D4 = 1�x1	 x2� � k1 � x1 � k	x2 � k22	

D5 = 1�x1	 x2� � x1 � k	x2 � k22	

D6 = 1�x1	 x2� � x1 � k	x2 � k22

As another example, suppose we are interested in finding
an upper bound on the price of an option with payoff

��x�=max�0	 a′
1x−k1	 a

′
2x−k2�

This option allows its holder to buy two stock indices at
maturity: the first one (given by the vector a1) at price k1,
and the second one (given by the vector a2) at price k2.

Suppose we have estimated the mean and covariance matrix
of the underlying securities. Again, Theorem 8(b) applies.
In this case there are three sets Dk that form a polyhedral
partition of Rm:

D1 = 1x ∈ Rm � a′
1x−k1 � 0	 a′

2x−k2 � 02	

D2 = 1x ∈ Rm � 0� a′
1x−k1	 a

′
2x−k2 � a′

1x−k12	

D3 = 1x ∈ Rm � 0� a′
2x−k1	 a

′
1x−k2 � a′

2x−k12

Note that if x ∈ D1, ��x� = 0, while if x ∈ D2, ��x� =
a′
1x−k1. Finally, if x ∈D3, ��x�= a′

2x−k2.

6.2. The Complexity of Optimal Bounds

Theorem 8 provides optimal bounds in polynomial time if
we optimize over Rm, but not over Rm

+. The next theorem
shows that it is NP-hard to find optimal bounds over Rm

+.

Theorem 9 (Complexity of Finding Optimal Bounds).
The problem of finding the optimal bound

max
X∼�M	:�+

E���X�
 (37)

is NP-hard even if ��x�= f ′x.

Proof. The dual of Problem (37) is

minimize y0+
n∑

i=1

yi�i+
n∑

i=1

i∑
j=1

yij��ij +�i�j�	

subject to x′Yx+y′x+y0 � f ′x	 ∀x � 0	

and the corresponding separation problem becomes:

Separation Problem. Given �Y 	 y	 y0�, check if
minx�0 x

′Yx+y′x+y0−f ′x � 0, otherwise find a violated
inequality.
The separation problem is NP-hard because it reduces

to verifying that the matrix Y is co-positive, which is an
NP-hard problem (see Murty and Kabadi 1987). There-
fore, by the equivalence of separation and optimiza-
tion (see Grötschel et al. 1981), it is NP-hard to solve
Problem (37). �

7. CONCLUDING REMARKS

We have demonstrated that convex optimization is the nat-
ural way to address the relation between option and stock
prices without making distributional assumptions for the
underlying price dynamics, using only the no-arbitrage
assumption. For the single stock problem, we have shown
that we can efficiently find optimal bounds on option prices,
either algorithmically (solving a semidefinite optimization
problem) or in closed form. For options that are affected
by multiple stocks either directly (the payoff of the option
depends on multiple stocks) or indirectly (we have infor-
mation on correlations between stock prices), we can find
bounds (but not optimal ones) using convex optimization
methods. However, it is NP-hard to find optimal bounds in
multiple dimensions.
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APPENDIX

Proof of Proposition 1. (a) Suppose (5) holds. Let ex =
�1	 x	 x2	    	 xk�′. Then

g�x� =
2k∑
r=0

∑
i+j=r

xijx
r

=
k∑

i=0

k∑
j=0

xijx
ixj

= e′xXex

� 0	

because X 	 0.
Conversely, suppose that the polynomial g�x� of degree

2k is nonnegative for all x. Then, the real roots of g�x�
should have even multiplicity, otherwise g�x� would alter
its sign in a neighborhood of a root. Let 9i, i = 1	    	 r
be its real roots with corresponding multiplicity 2mi. Its
complex roots can be arranged in conjugate pairs, aj + ibj ,
aj − ibj , j = 1	    	 h. Then,

g�x�= y2k

r∏
i=1

�x−9i�
2mi

h∏
j=1

(
�x−aj�

2+b2
j

)


Note that the leading coefficient y2k needs to be positive.
Thus, by expanding the terms in the products, we see that
g�x� can be written as a sum of squares of polynomials of
the form

g�x� =
k∑

i=0

(
k∑

j=0

xijx
j

)2

= e′xXex	

with X positive semidefinite, from where Equation (5) fol-
lows.

(b) We observe that g�x�� 0 for x ∈ �0	 a
 if and only
if

�1+ t2�kg

(
at2

1+ t2

)
� 0	 for all t

Because

�1+ t2�kg

(
at2

1+ t2

)
=

k∑
r=0

yra
r t2r �1+ t2�k−r

=
k∑

r=0

yra
r
k−r∑
l=0

(
k− r

l

)
t2�l+r�

=
k∑

j=0

t2j
( j∑

r=0

yr

(
k− r

j− r

)
ar

)
	

by applying Part (a) we obtain Equation (6).
(c) We observe that g�x�� 0 for x ∈ �a	�� if and only

if

g�a�1+ t2��� 0	 for all t

Because

g�a�1+ t2�� =
k∑

r=0

yra
r�1+ t2�r

=
k∑

r=0

yra
r

r∑
l=0

(
r

l

)
t2l

=
k∑

l=0

t2l
( k∑

r=l

yr

(
r

l

)
ar

)
	

by applying Part (a) we obtain Equation (7).
(d) We observe that g�x�� 0 for x ∈ �a	 b
 if and only

if

�1+ t2�kg

(
a+ �b−a�

t2

1+ t2

)
� 0	 for all t

Because

�1+ t2�kg

(
a+ �b−a�

t2

1+ t2

)
=

k∑
r=0

yr�a+bt2�r �1+ t2�k−r

=
k∑

r=0

yr

r∑
m=0

(
r

m

)
ar−mbmt2m

k−r∑
j=0

(
k− r

j

)
t2j

=
k∑

l=0

t2l
( l∑

m=0

k+m−l∑
r=m

yr

(
r

m

)(
k− r

l−m

)
ar−mbm

)
	

by applying Part (a) we obtain Equation (8). �

ENDNOTE
1An example of such a condition is as follows: If the
vector of moments q is interior to the feasible moment set
�= 1E�f �X�
 � X arbitrary multivariate distribution2, then
strong duality holds.
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